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SUMMARY

The purpose of this paper is to compare the communication performance and scalability of MPI
communication routines on a Windows Cluster, a Linux Cluster, a Cray T3E-600, and an SGI Origin 2000.
All tests in this paper were run using various numbers of processors and two message sizes. In spite of
the fact that the Cray T3E-600 is about 7 years old, it performed best of all machines for most of the tests.
The Linux Cluster with the Myrinet interconnect and Myricom’s MPI performed and scaled quite well and,
in most cases, performed better than the Origin 2000, and in some cases better than the T3E. The Windows
Cluster using the Giganet Full Interconnect and MPI/Pro’s MPI performed and scaled poorly for small
messages compared with all of the other machines. Copyright c© 2004 John Wiley & Sons, Ltd.

KEY WORDS: PC clusters; MPI; MPI performance

1. INTRODUCTION

MPI [1] is the standard message-passing library used for programming distributed memory parallel
computers. Implementations of MPI are available for all commercially available parallel platforms,
including PC clusters. Nowadays, clusters are considered as an inexpensive alternative to ‘traditional’
parallel computers. The purpose of this paper is to compare the communication performance and
scalability of MPI communication routines on a Windows Cluster, a Linux Cluster, a Cray T3E-600,
and an SGI Origin 2000.
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2. TEST ENVIRONMENT

The SGI Origin 2000 [2,3] used for this study is a 128-processor machine in which each processor is
MIPS R10000 running at 250 MHz. There are two levels of cache: 32×1024 byte first level instruction
and data caches, and a 4 × 1024 × 1024 byte second level cache for both data and instructions.
The communication network is a hypercube for up to 32 processors and is called a ‘fat bristled
hypercube’ for more than 32 processors since multiple hypercubes were interconnected via a Cray
Link Interconnect. For all tests, the IRIX 6.5 operating system, the Fortran compiler version 7.3.1.1m
and the MPI library version 1.4.0.0.1 were used.

The T3E-600 [2,4] used is a 512-processor machine located in Eagan, Minnesota. Each processor
is a DEC Alpha EV5 microprocessor running at 300 MHz. There are two levels of cache: 8 × 1024
byte first level instruction and data caches and a 96 × 1024 byte second level cache for both data and
instructions. The communication network is a three-dimensional, bi-directional torus. For all tests, the
UNICOS/mk 2.0.5 operating system, the Fortran compiler version cf90.3.3.0.2 and the MPI library
version 1.4.0.0.2 were used.

The Dell Windows Cluster of PCs [5] used is a 128-processor (64-node) machine located at the
Computational Materials Institute (CMI) at the Cornell Theory Center. Each node consists of a 64
dual PIII 1 GHz processor with 2 GB of memory. Each processor has 256 KB cache. Nodes are
interconnected via a full 64-way Giganet Interconnect (100 MB/s). To use the Giganet Interconnect the
environment variable MPI COMM was set to VIA. Other than setting the MPI COMM environment
variable, default settings were used for all tests. The system runs Microsoft Windows 2000, which is
key to the seamless desktop-to-HPC model that CTC is pursuing. For all tests, the MPI/Pro library from
MPI Software Technology (MPI/Pro distribution version 1.6.3) and Compaq Visual Fortran Optimizing
Compiler version 6.1 were used. The Cornell Theory Center also has two other Velocity and Velocity+
clusters. The results for the Velocity Cluster for MPI tests were similar to the results for the cluster
at CMI.

The Linux Cluster of PCs [6] used is a 1024-processor machine located at the National Center
for Supercomputing Applications (NCSA) in Urbana-Champaign, Illinois. The cluster is a 512-node
cluster, each node consisting of a dual processor Intel Pentium III (1 GHz) machine with 1.5 GB ECC
SDRAM. Each processor has 256 KB full-speed L2 cache. Nodes are interconnected via a Myrinet
(full-duplex 1.28 + 1.28 GB/s) network. The system was running Linux 2.4.9 (RedHat 7.2). For all
tests, version 3.0-1 Intel Fortran compiler (ifc) with the -Qoption,ld,-Bdynamic compiler options, and
the MPICH-GM for the Myrinet Linux Cluster were used. All the tests were run both with 1 process
and 2 processes per node. Thus, later in the paper the results of the tests run with 1 process per node
are shown under ‘Linux Cluster (1 ppn)’ and the results with 2 processes per node are shown under
‘Linux Cluster (2 ppn)’.

The performance results reported in this paper were obtained with a large message size and a
small message size, all using 8 byte reals, and up to 128 processors. Section 3 introduces the timing
methodology used. Section 4 presents the performance results. The conclusions are listed in Section 5.

3. TIMING METHODOLOGY

All tests were timed using the following template:

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107
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integer, parameter ::ntest=51
real*8, dimension(ntest) :: array_time, time
. . .
do k = 1, ntest

flush(1:ncache) = flush(1:ncache) + 0.1
call mpi_barrier(mpi_comm_world, ierror)
t = mpi_wtime()

... mpi routine(s) ...

array_time(k) = mpi_wtime()-t
call mpi_barrier(mpi_comm_world, ierror)
A(1) = A(1) + flush(mod(k, ncache))
enddo
call mpi_reduce(array_time, time, ntest, mpi_real8, mpi_max, 0, &

mpi_comm_world, ierror)

...

write(*,*) "prevent dead code elimination", A(1), flush(1)

Throughout this paper, ntest is the number of trials of a timing test performed in a single job.
The value of ntest should be chosen to be large enough to access the variability of the performance
data collected. For the tests in this paper, setting ntest= 51 (the first timing was always discarded)
was satisfactory. Timings were done by first flushing the cache on all processors by changing the values
in the real array flush(1:ncache) prior to timing the desired operation. The value of ncachewas
chosen so the size of the array flush was the size of the secondary cache for the T3E-600 (96 × 1024
bytes), the Origin 2000 (8 × 1024 × 1024 bytes), the Windows and Linux Clusters (512 × 1024 bytes).
Note that by flushing the cache before each trial, the data that may have been loaded in the cache during
the previous trial cannot be used to optimize the communications of the next trial [3]. Figure 1 shows
that the execution time without cache flushing is ten times smaller than the execution time with cache
flushing for the broadcast communication of an 8-byte message with 128 processors on the Origin.

In the above timing code, the first call to mpi barrier guarantees that all processors reach this
point before they each call the wallclock timer, mpi wtime. The second call to mpi barrier is
to make sure that no processor starts the next iteration (flushing the cache) until all processors have
completed executing the collective communication to be timed. The test is executed ntest times and
the values of the differences in times on each participating processor are stored in array time.
Some compilers might split the whole timing loop into two loops with cache flushing statement
in the one and timed MPI routine in the other. To prevent this, the statement ‘A(1) = A(1) +
flush(mod(k, ncache))’ was added into the timing loop, where A is the array involved in the
communication being timed. To prevent the compiler from considering all or part of the ‘code to be
timed’ as dead code and eliminating it, later in the program the value of A(1) and flush(1) were
used in the write statement. The call to mpi reduce calculates the maximum of array time(k)
for each fixed k and places this maximum in time(k) on processor 0 for all values of k. Thus,
time(k) is the time to execute the test for the kth trial.

Figure 2 shows times in seconds for 100 trials for mpi bcast test with 128 processors and 10 KB
message. Note that there are several ‘spikes’ in the data with the first spike being the first timing.
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Figure 1. Execution times for mpi bcast for an 8-byte message on the Origin.
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Figure 2. Time for 100 trials for mpi bcast for a 10 KB message on the Origin with 128 processors.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107



PERFORMANCE AND SCALABILITY OF MPI ON PC CLUSTERS 83

Table I. Time ratios for average of filtered data for all processes
for the ping-pong test.

Message size 8 bytes 1 MB

Origin/T3E 2.8 1.6
Windows Cluster/T3E 4.3 1.1
Linux Cluster (1 ppn)/T3E 1.1 1.3
Linux Cluster (2 ppn)/T3E 1.8 1.3

The first timing usually is significantly longer than most of the other timings (likely due to the
additional setup time required for the first call to subroutines and functions), so the time for the first
trial is always removed. The other spikes are probably due to the operating system interrupting the
execution of the program. The average of the 99 trials (the first trial is removed) is 94.7 ms, which is
much longer than most of the other trials. The authors decided to measure times for each operation by
first filtering out the spikes as follows. Compute the median value after the first time trial is removed.
All times greater than 1.8 times this median are candidates to be removed. The authors consider it to be
inappropriate to remove more than 10% of the data. If more than 10% of the data would be removed by
the above procedure then only the largest 10% of the spikes are removed. Authors thought that these
additional (smaller) spikes should influence the data reported. However, for all tests in this paper, the
filtering process always removed less than 10% of the data. Using this procedure, the filtered value for
the time in Figure 2 is 87.7 ms instead of 94.7 ms.

4. TEST DESCRIPTIONS AND PERFORMANCE RESULTS

This section contains performance results for 11 MPI communication tests. All tests except for the
ping-pong test were run using 2, 4, 8, 16, 32, 64, 96 and 128 processors on all machines using
mpi comm world for the communicator. There are two processors on each node of the Linux Cluster
and MPI jobs can be run with either one MPI process per node (1 ppn) or with two MPI processes
per node (2 ppn). For the Linux Cluster, all tests were run using 1 ppn and using 2 ppn since there are
256 nodes on this machine. Since there are only 64 nodes on the Windows Cluster, all tests were run
with two MPI processes per node.

4.1. Test 1: ping-pong between ‘near’ and ‘distant’ processors

Ideally, one would like to be able to run parallel applications with large numbers of processors without
the communication network slowing down execution. One would like the time for sending a message
from one processor to another to be independent of the processors used. To determine how each
machine deviates from this ideal, we measure the time required for processor 0 to send a message
and receive it back from processor j for j = 1–127 for all machines. Because of time limitations we
did not test ping-pong times between all processors. The code for processor 0 to send a message of size
n to processor j = 1 to 127 and to receive it back is:

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107
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Figure 3. Test 1 (ping-pong between ‘near’ and ‘distant’ processors) with times in milliseconds.
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Ping Pong Between Processors (1Mbyte)
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Figure 4. Test 1 (ping-pong between ‘near’ and ‘distant’ processors) with times in milliseconds.

if (rank == 0) then
call mpi_send (A,n,mpi_real8,j,1, mpi_comm_world,ierr)
call mpi_recv(B,n,mpi_real8,j,2,mpi_comm_world,status,ierr)

endif
if (rank == j) then

call mpi_recv(B,n,mpi_real8,0,1,mpi_comm_world,status,ierr)
call mpi_send (A,n,mpi_real8,0,2, mpi_comm_world,ierr)

endif

Notice that processor j receives the message in array B and sends the message in array A. If the
message were to be received in A instead of B, then this would put A into the cache making the
sending of the second message in the ping-pong faster than the first. The results of this test are based
on one run per machine (with many trials) because the assignment of ranks to physical processors will
vary from one run to another.

Figures 3 and 4 present the performance data for this test. Each ping-pong time is divided by two,
indicating the average one-way communication time. For both message sizes, the T3E shows the best
performance. Ideally, these graphs would all be horizontal lines. Note that many of the graphs are
‘reasonably close’ to this ideal. The Origin and Windows Cluster have the largest variation in times
for this test for an 8-byte message. The performance data for 8-byte messages shows that the Windows
Cluster has significantly higher latency than the other machines. However, for the 1 MB message the
Windows Cluster performs better than the Linux Cluster and the Origin. Note that on the Windows
Cluster the time to send and receive a message between processes 0 and 64 is much less than the
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Figure 5. Test 2 (circular right shift) with times in milliseconds.

other times. This is likely due to process 0 and 64 being assigned to the same node resulting in
communication within the node instead of between nodes. Also note the large spikes in the performance
data for 8-byte messages for the Windows Cluster. Recall that for each fixed number of processes and
for each fixed rank, the test was run 51 times and these data were then filtered as described in Section 3.
Figure 3 presents the results of these data after filtering. The authors examined the raw data (51 trials)
for the large spikes shown for the Windows Cluster in Figure 3 and discovered that most of the data
were large; however, if one takes the minimum of the raw data, then the performance data are then more
in line with the other data shown in Figure 3. It is likely therefore, that these large spikes in the Windows
Cluster are due to operating system activity occurring during the execution of the ping-pong test.

To give an idea of the overall performance achieved on this test on each machine, the data for all the
different numbers of MPI processes were filtered (as described in Section 3) and an average was taken.
Since the performance data for the Cray T3E were best, these averages were then compared with the
average times computed for the T3E, see Table I.

4.2. Test 2: the circular right shift

The purpose of this test is to measure the performance of the ‘circular right shift’ where each process
receives a message of size n from its ‘left’ neighbor, i.e. modulo(myrank-1,p) is the left neighbor
of myrank. Ideally, the execution time for this test would not depend on the number of processors,
since these operations have the potential of executing at the same time. The code used for this test is:

call mpi_sendrecv(a,n,mpi_real8,modulo(myrank+1,p),tag,b,n, &
mpi_real8,modulo(myrank-1,p),tag,mpi_comm_world,status,ierr)

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107
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Circular Right Shift (10 Kbytes)
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Figure 6. Test 2 (circular right shift) with times in milliseconds.

Figures 5 and 6 present the performance data for this test. Note that for both message sizes, the T3E
performs best. Also note that both the T3E and the Linux Cluster scale well for both message sizes.
The Windows Cluster performs and scales poorly for both message sizes. This is likely due to a poor
implementation of mpi sendrecv since the Windows Cluster performs well for the ping-pong test for
1 MB messages.

4.3. Test 3: the barrier

An important performance characteristic of a parallel computer is its ability to efficiently execute a
barrier synchronization. This test evaluates the performance of the MPI barrier:

call mpi_barrier(mpi_comm_world, ierror)

Figure 7 presents the performance and scalability data for mpi barrier. Note that the T3E and the
Origin scale and perform significantly better than the Windows and Linux Clusters. The Linux Cluster
performs better than the Windows Cluster. Table II shows the performance of all machines relative to
the T3E for 128 processors.

4.4. Test 4: the broadcast

This test evaluates the performance of the MPI broadcast:

call mpi_bcast(A, n, mpi_real8, 0, mpi_comm_world, ierror)

for n = 1 and n = 125 000.
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Figure 7. Test 3 (mpi barrier) with times in milliseconds.

Table II. Time ratios for 128 processors
for the mpi barrier test.

Origin/T3E 5.8
Windows Cluster/T3E 143
Linux Cluster (1 ppn)/T3E 112
Linux Cluster (2 ppn)/T3E 104

Figures 8 and 9 present the performance data for mpi bcast. The T3E and the Linux Cluster (both
with 1 and 2 processes per node) show good performance for 8-byte messages and they both perform
about three times better than the Origin. The performance of the Windows Cluster was so poor that
a separate graph was required to show its performance. The results for 1 MB messages are closer to
each other, with the T3E performing best and the Windows Cluster performing the worst. Table III
shows the performance of all machines relative to the T3E for 128 processors. Notice that for an 8-byte
message the Linux Cluster with 1 process per node outperformed the T3E.

To better understand how well the machines scale implementing mpi bcast, let us consider the
following simple execution model. Assume the time to send a message of size M bytes from one
processor to another is

α + Mβ

where α is the latency and β is the communication rate of the network. This assumes there is no
contention and there is no difference in time when sending a message between any two processors.
Assume that the number of processors, p, used is a power of 2, and assume that mpi bcast is
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Figure 8. Test 4 (mpi bcast) with times in milliseconds.

implemented using a binary tree algorithm. If p = 2k, then with the above assumptions the time
to execute a binary tree broadcast for p processors would be

(log(p)) (α + Mβ)

Thus, ideally (execution time)/log(p) would be a constant for all such p for a fixed message size. Thus,
plotting

(execution time)/log(p)

will provide a way to better understand the scalability of mpi bcast for each machine. Figure 10
shows these results. Note that when p < 8, the (execution time)/log(p) is nearly constant on all
machines, except the Windows Cluster for an 8-byte message.
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Table III. Time ratios for 128 processors for the mpi bcast test.

Message size 8 bytes 1 MB

Origin/T3E 2.5 1.5
Windows Cluster/T3E 51 2
Linux Cluster (1 ppn)/T3E 0.83 1.37
Linux Cluster(2 ppn)/T3E 1.08 1.33

4.5. Test 5: the scatter

This test measures the time to execute

call mpi_scatter(B, n, mpi_real8, A, n, mpi_real8, 0,
mpi_comm_world, ierror)

for n = 1 and n = 1250. For both message sizes, the T3E has the best performance, see
Figures 11 and 12. Notice that for 8 byte messages the performance of the Windows Cluster is much
poorer than the other machines. Table IV shows the performance of all machines relative to the T3E
for 128 processors.

Let us assume that the mpi scatter was implemented by an algorithm based on a binary tree.
Initially the root processor 0 owns p messages m0, . . . ,mp−1, each of size M bytes, that have to be
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Figure 11. Test 5 (mpi scatter) with times in milliseconds.

sent to processors 1, . . . , p−1, respectively. First, processor 0 sends mp/2, . . . ,mp−1 to processor p/2.
For the second step, processors 0 send messages mp/4, . . . ,mp/2−1 to processor p/4 and concurrently
processor p/2 sends messages m3p/4, . . . ,mp−1 to 3p/4. The scatter is completed by repeating these
steps log(p) times. Based on the model described above, the execution time would be

α log(p) + (p − 1)Mβ

If we now assume that a large message is being scattered, then M is large and the execution time
will be dominated by (p − 1)Mβ. Thus, the (execution time)/(p − 1) would be constant for a fixed
message size as p increases. This allows us to better understand the scalability of mpi scatter for
large messages. Figure 13 shows that the (execution time)/(p − 1) is nearly constant on all machines
when more than eight processes participate in communications. When M is small, then both terms of
the above expression are significant. That makes it difficult to evaluate the scalability for the simple
execution-time model presented above.
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Figure 12. Test 5 (mpi scatter) with times in milliseconds.

Table IV. Time ratios for 128 processors for the mpi scatter test.

Message size 8 bytes 10 KB

Origin/T3E 3 3.5
Windows Cluster/T3E 13.36 3.35
Linux Cluster (1 ppn)/T3E 2.9 8.44
Linux Cluster (2 ppn)/T3E 3.14 2.6

4.6. Test 6: the gather

This test measures the time to execute

call mpi_gather(A, n, mpi_real8, B, n, mpi_real8, 0,
mpi_comm_world, ierror)

for n = 1 and n = 1250.
Figures 14 and 15 present the performance data for this test. For, an 8-byte message, the performance

on all machines except Windows Cluster is similar, with the Linux Cluster (2 processes per node)
performing best. For a 10-KB message, the T3E has the best performance. Table V shows the
performance of all machines relative to the T3E for 128 processors.
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Figure 13. Test 5 (mpi scatter) plotting the (execution time)/(p −1), where p is the number of the processors.
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Figure 14. Test 6 (mpi gather) with times in milliseconds.
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Figure 15. Test 6 (mpi gather) with times in milliseconds.

Table V. Time ratios for 128 processors for the mpi gather test.

Message size 8 bytes 10 KB

Origin/T3E 1.1 3.5
Windows Cluster/T3E 2 3
Linux Cluster (1 ppn)/T3E 1.1 2.15
Linux Cluster (2 ppn)/T3E 1.2 1.9

The scalability analysis for mpi gather is the same as that for mpi scatter. Figure 16 shows
that the (execution time)/(p − 1) is roughly constant on the T3E, the Origin and the Windows Cluster
for the large message size when more than eight processes participate in the communications.

4.7. Test 7: the all-gather

This test measures the time to execute:

call mpi_allgather(A(1), n, mpi_real8, B(1,0), n, mpi_real8,
mpi_comm_world, ierror)

for n = 1 and n = 1250.
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Figure 16. Test 6 (mpi gather) plotting the (execution time)/(p − 1), where p is the number of the processors.
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Figure 17. Test 7 (mpi allgather) with times in milliseconds.

Figures 17 and 18 present the performance data for this test. For the 8-byte message, the performance
and scalability of the T3E and the Origin are good compared with those of the Windows and Linux
Clusters. For the 10-KB message, the Linux Cluster (both 1 and 2 processes per node) performs slightly
better than the T3E, while the Origin and the Windows Cluster demonstrate poor performance. Table VI
shows the performance of all machines relative to the T3E for 128 processors.
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Figure 18. Test 7 (mpi allgather) with times in milliseconds.

Table VI. Time ratios for 128 processors for the mpi allgather test.

Message size 8 bytes 10 KB

Origin/T3E 1.2 2.8
Windows Cluster/T3E 1.97 3.72
Linux Cluster (1 ppn)/T3E 1.86 0.75
Linux Cluster (2 ppn)/T3E 1.64 0.68

The mpi allgather is sometimes implemented as p − 1 circular right shifts executed by each
of the p processors [7], where each processor i initially owns a message mi of size M bytes. The j th
right-shift is defined by: each processor i receives the message m(p+(i−j)) modp from processor (i − 1)

mod p. Assuming each right shift can be executed in the amount of time to send a single message of
mi of size M bytes from one to another processor, the execution time of mpi allgather is

(p − 1)(α + Mβ)

Thus, (execution time)/(p−1) will be a constant for all such p for a fixed message size. Hence, plotting
(execution time)/(p − 1) can provide a way to better understand the scalability of mpi allgather
for each machine. Figures 19 and 20 show that when the number of processes is more than eight,
(execution time)/(p − 1) is roughly constant for all the machines except for the Windows Cluster and
the Origin for the 10 KB message size.
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Figure 19. Test 7 (mpi allgather) plotting (execution time)/(p − 1), where p is the number of processors.
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Figure 20. Test 7 (mpi allgather) plotting (execution time)/(p − 1), where p is the number of processors.
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Figure 21. Test 8 (mpi alltoall) with times in milliseconds.

4.8. Test 8: the all-to-all

For mpi alltoall, each processor sends a distinct message of the same size to all other processors
and hence produces a large amount of traffic on the communication network. This test measures the
time to execute

call mpi_alltoall(C(1,0), n, mpi_real8, B(1,0), n, mpi_real8,
mpi_comm_world, ierror)

for n = 1 and n = 1250.
Figures 21 and 22 present the performance data for this test. Note that for the 8-byte message,

both the T3E and the Origin perform better than the Linux Clusters and significantly better than the
Windows Cluster. However, for the 10-KB message, the Origin does not perform as well as the other
machines. Table VII shows the performance of all machines relative to the T3E for 128 processors.

Like the mpi allgather, the mpi alltoall is usually implemented as cyclically shifting the
messages on the p processors [7]. Initially processor i owns p messages of size M bytes denoted by
m0

i , m1
i , . . . , m

p−1
i . At the step 0 < j < p, each processor i sends m

(p+(i−j)) modp

i to the processor
(i − j) mod p. Thus the execution time would be

(p − 1)(α + Mβ)

Thus, (execution time)/(p − 1) will be a constant for all such p for a fixed message size, just like the
case of the mpi allgather. Then, plotting (execution time)/(p − 1) will provide a way to better
understand the scalability of mpi alltoall for each machine. Figures 23 and 24 show these results.
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Figure 22. Test 8 (mpi alltoall) with times in milliseconds.

Table VII. Time ratios for 128 processors for the mpi alltoall test.

Message size 8 bytes 10 KB

Origin/T3E 0.9 3.3
Windows Cluster/T3E 10.9 1.72
Linux Cluster (1 ppn)/T3E 2.32 1.2
Linux Cluster (2 ppn)/T3E 4.48 2.24

Note that though the Origin scales well for the 8-byte message, it shows really poor scalability for a
bigger message size.

4.9. Test 9: the reduce

This test measures the time to execute:

call mpi_reduce(A,C,n,mpi_real8,mpi_sum,0,mpi_comm_world,ierror)

for n = 1 and n = 125 000.
Figures 25 and 26 present the performance data for MPI reduce with the sum operation. The results

of the min and max operations are similar. The Origin has the best performance for 1-MB messages
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Figure 23. Test 8 (mpi alltoall) plotting (execution time)/(p − 1), where p is the number of processors.
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Figure 24. Test 8 (mpi alltoall) plotting (execution time)/(p − 1), where p is the number of processors.
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Figure 25. Test 9 (mpi reduce sum) with times in milliseconds.
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Figure 26. Test 9 (mpi reduce sum) with times in milliseconds.

and the Windows Cluster again gives the worst performance for 8-byte messages. Table VIII shows the
performance of all machines relative to the T3E for 128 processors.

The discussion of the scalability of this algorithm is beyond the scope of this paper; see [7] for an
algorithm for implementing mpi reduce.
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Table VIII. Time ratios for 128 processors for the mpi reduce test.

Message size 8 bytes 1 MB

Origin/T3E 2.5 0.6
Windows Cluster/T3E 5.4 1.3
Linux Cluster (1 ppn)/T3E 0.65 0.83
Linux Cluster (2 ppn)/T3E 0.67 0.87
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Figure 27. Test 10 (mpi allreduce sum operation) with times in milliseconds.
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Figure 28. Test 10 (mpi allreduce sum operation) with times in milliseconds.

Table IX. Time ratios for 128 processors for the mpi allreduce test.

Message size 8 bytes 1 MB

Origin/T3E 2.2 0.78
Windows Cluster/T3E 7.4 1.37
Linux Cluster (1 ppn)/T3E 0.88 0.89
Linux Cluster (2 ppn)/T3E 0.97 0.91

4.10. Test 10: the all-reduce

The mpi allreduce is same as the mpi reduce except that the result is sent to all processors
instead of only to the root processor. This test measures the time to execute

call mpi_allreduce(A,C,n,mpi_real8,mpi_sum,mpi_comm_world,ierror)

for n = 1 and n = 125 000.
Figures 27 and 28 present the performance data for mpi allreduce sum operation. The results

of the min and max operations are similar, including the ‘spike’ on the T3E for the 8-byte message
when 128 processes were used in the communications. Except this ‘spike’, the T3E performs best for
the 8-byte message size. For the 1-MB message, the Origin performs the best with the T3E and the
Linux Cluster showing close performance. Table IX shows the performance of all machines relative to
the T3E for 128 processors.
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Figure 29. Test 11 (mpi scan) with times in milliseconds.
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Figure 30. Test 11 (mpi scan) with times in milliseconds.
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Table X. Time ratios for 128 processors for the mpi scan test.

Message size 8 bytes 1 MB

Origin/T3E 76 9.5
Windows Cluster/T3E 45.6 9.6
Linux Cluster (1 ppn)/T3E 21 11
Linux Cluster (2 ppn)/T3E 17 10.9

4.11. Test 11: the scan

This test measures the time to execute

call mpi_scan(A, C, n, mpi_real8, mpi_sum, mpi_comm_world, ierror)

for n = 1 and n = 125 000. Mpi scan is used to perform a prefix reduction on data distributed across
the group. The operation returns, in the receive buffer of the process with rank i, the reduction of the
values in the send buffers of processes with ranks 0,...,i (inclusive).

Figures 29 and 30 present the performance data. The results for the min and max operations are
similar. Note that the T3E performs and scales significantly better than all the other machines. Table X
shows the performance of all machines relative to the T3E for 128 processors.

5. CONCLUSION

The purpose of this paper is to compare the communication performance and scalability of MPI
communication routines on a Windows Cluster, a Linux Cluster, a Cray T3E-600, and an SGI
Origin 2000. All tests in this paper were run using various numbers of processors and two message
sizes. In spite of the fact that the Cray T3E-600 is about 7 years old, it performed best of all machines
for most of the tests. The Linux Cluster with the Myrinet Interconnect and Myricom’s MPI performed
and scaled quite well and, in most cases, performed better than the Origin 2000, and in some cases
better than the T3E. The Windows Cluster using the Giganet Full Interconnect and MPI/Pro’s MPI
performed and scaled poorly for small messages compared with all of the other machines. These high-
latency problems have been reported to MPI Software Technology, Inc. for fixing.

ACKNOWLEDGEMENTS

We thank SGI and Cray Research for allowing us to use their Origin 2000 and T3E-600 located in Eagan,
Minnesota. We would like to thank the National Center for Supercomputing Applications at the University of
Illinois in Urbana-Champaign, Illinois, for allowing use to use their IA-32 Linux Cluster. We would also like
to thank the Cornell Theory Center for access to their Windows Clusters. This work utilizes the cluster at the
Computational Materials Institute.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107



PERFORMANCE AND SCALABILITY OF MPI ON PC CLUSTERS 107

REFERENCES

1. Snir M, Otto SW, Huss-Lederman S, Walker DW, Dongarra J. MPI, the Complete Reference. Scientific and Engineering
Computation. MIT Press: Cambridge, MA, 1996.

2. Cray Research Web Server. http://www.cray.com [November 2002].
3. Origin Server. Technical Report. Silicon Graphics, April 1997.
4. Anderson A, Brooks J, Grassl C, Scott S. Performance of the CRAY T3E multi-processor. Proceedings of Supercomputing

97, San Jose, CA, 15–21 November 1997. ACM Press: New York, 1997.
5. Lifka D. High performance computing with Microsoft Windows 2000.

http://www.tc.cornell.edu/ac3/tech/cluster20012.pdf [November 2002].
6. NCSA IA-32 Linux Cluster. http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/IA32LinuxCluster/ [November 2002].
7. Luecke GR, Raffin B, Coyle JJ. The performance of the MPI collective communication routines for large messages on the

Cray T3E600, the Cray Origin 2000, and the IBM SP. Journal of Performance Evaluation and Modelling for Computer
Systems, July 1999. http://dsg.port.ac.uk/Journals/PEMCS/papers/paper10.pdf.

Copyright c© 2004 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2004; 16:79–107


	1 INTRODUCTION
	2 TEST ENVIRONMENT
	3 TIMING METHODOLOGY
	4 TEST DESCRIPTIONS AND PERFORMANCE RESULTS
	4.1 Test 1: ping-pong between `near' and `distant' processors
	4.2 Test 2: the circular right shift
	4.3 Test 3: the barrier
	4.4 Test 4: the broadcast
	4.5 Test 5: the scatter
	4.6 Test 6: the gather
	4.7 Test 7: the all-gather
	4.8 Test 8: the all-to-all
	4.9 Test 9: the reduce
	4.10 Test 10: the all-reduce
	4.11 Test 11: the scan

	5 CONCLUSION

